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ABSTRACT 

 

The paper is concerned with the numerical analysis of anonlinear weakly singular Volterra integral equation by the 

product Euler's method, we proved that the error in Euler's method is of orderO(h). To illustrate the convergence rates 

some numerical results are included confirming the theoretical estimates. 
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INTRODUCTION 

 

Abel’s equation is one of the integral equations derived 

directly from a concrete problem of physics, without 

passing through a differential equation. This equation was 

applied by Niels Abel in 1823 to describe a sliding point 

mass in a vertical plane on a unknown curve under 

gravitational force. The point mass starts its motion 

without initial velocity from a point which has a vertical 

distance x from the lowest point of the curve see Wazwaz 

(1997). Using the work-energy theorem, the equation of 

the unknown curve that obtained is the well-known Abel 

integral equation 
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txg

tu
xf

x





0 )(2

)(
)(

           (1)
 

Where )(xf is a given function, )(tu is an unknown 

function in which g  is the acceleration due to gravity. 

This equation is a particular case of a linear Volterra 

equation of the first kind. After one century, in 1924, 

Zeilon (1924) studied the generalized Abel’s integral 

equation on a finite segment. Many works have already 

been done to solve the Abel integral equations. The brief 

history and basic classical solution to Abel problems are 

well covered in the monographs by Muskhelishvilli 

(1963), Polyanin and Zaitsev (1999). Well-known 

examples of statistical inverse problems are Wicksells 

problem in stereology, where one wishes to recover the 

frequency distribution of actual radius of spherical  

 

particles from a sample of planar cuts see (Ripley, 1981; 

Stoyan et al. 1987) and computerized tomography, where 

the density of a body is to be recovered from a collection 

of line integrals see (Vardi et al. 1985; Hall et al. 2003). 

Other examples range from inverse heat conduction to a 

wide variety of problems involving de-convolution and 

visualizing. In statistical terminology these problems 

might be classified as those of indirect curve estimation. 

Anderssen (1980), Anderssen and De Hoog(1990), 

Gorenflo and Vessella (1991), Gorenflo et al. (1997) are 

reviews of methods based on Abel integral equations and 

Carroll et al. (1991) for a review of theoretical aspects of 

ill-posed problems in statistics. 

 
Huang et al. (2008), Capobianco and Conte (2006), Yousefi 

(2006), Chakrabarti (2008), Gorenflo and Luchko (1997) 

have also solved Abel integral equations by using Taylor 

expansion, waveform relaxation method, numerical solution 

by Legendrewavelet, direct function theoretic method and 

operational matrix respectively. Another study, Singh et al. 

(2010) have used Bernstein operational method for solving 

Abel integral equation of second kind. In the last two 

decades, many powerful and simple methods have been 

proposed and applied successfully to approximate various 

types of linear and nonlinear singular integral equations with 

a wide range of applications. The generalized nonlinear Abel 

integral equation see Estrada (2000) and Kanwal (1997) is of 

the form 
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where α is a known constant such that 0 < α <1, f(t) is a 

given function, and F(u(x)) is a nonlinear function of u(x). 

The nonlinear Abel integral equation is a special case of 

the generalized equation where α = 1/2. The expression(x 

− t)
−α

is called the kernel of the integral equation. The 

Laplace transform Method see Muhammad et al. (2013), 

Homotopy Perturbation method see Sunil et al. (2011), 

the new iterative method see Praveen (2012) and anther 

methods are used to handle the generalized nonlinear 

Abel integral equation (2). The nonlinear weakly-singular 

Volterra integral equations of the second kind are given 

by 

 
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This equation arises in many mathematical physics and 

chemistry applications such as stereology, heat 

conduction, crystal growth and the radiation of heat from 

a semi-infinite solid. It is also assumed that the function 

f(x) is a given real valued function. The nonlinear weakly-

singular equation(3) falls under the category of singular 

equations with singular kernel. In Teresa et al. (2005) is 

concerned with the numerical solution of nonlinear 

weakly singular Volterra integral equation with type 

kernel of the form     ,,,


 stsystp with 

3/2  and    43/1,, yssystp   , with a non-

smooth solution by investigating the application of 

several numerical methods. 

 

In the present work we investigate the application of the 

product Euler's method to an onlinear weakly-singular 

Volterra integral equation of second kind which describes 

the temperature in a semi-infinite solid, whose surface can 

dissipate heat by nonlinear radiation. At the surface, 

energy is supplied according to the given function )(xf , 

while radiated energy see Olmstead and Handelsman 

(1976), escapes in proportion to )(xu n
. 

dx
xt
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tu
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Where )(tu gives the temperature at the surface for all 

time. In principle, equation (4) can be solved by Adomian 

decomposition method handles such problems effectively 

by selecting the values of )(xf and n see Wazwaz 

(2011). For selecting 2/1)( xf  and n=4 equation (4) 

becomes 

 1,0,
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Using the Adomain assumptions for  xu  and  tu4
the 

series representation for the solution of equation (5) is 

given by 
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that governs the radiation of heat from a semi-infinite 

solid having a constant heat source. 

For selecting 


x
xf 2)(   and n=3, equation (4) 

becomes 

 1,0,
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Using the Adomain assumptions for  xu  and  tu3
 the 

series representation for the solution of equation (6) is 

given by 
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It is straightforward to demonstrate that (5) and (6) have  

a unique continuous solution )(tu for  1,0t . In the 

Numerical method section we apply the product Euler's 

method to equation (5) and prove that it is convergent of 

order O(h
1/2

). By a detailed analysis we are able to show 

that, away from origin, the error in Euler's method is of 

order O(h). Numerical results are presented illustrating 

the performance of the method in Numerical method 

section. 

 

MATERIALS AND METHODS 

 

Numerical method 

 

In order to approximate the solution u(t)of equation  (5), 

let us introduce the uniform grid hX  On  1,0 , with step 

size Nh /1 , 

 NiihtX ih  0, . 

 

The Euler's method is defined as follows 
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Where 
iu denotes an approximation to )( itu and the weights jiW  are such that 
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The total error   iii utue  of the approximate solution of (5) at 
itt  satisfies 
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Where iT  is the quadrature error at itt  , given by: 
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Lemma 2.1. The solution u to equation (5) satisfies the inequality 

     1,0,,
2/1
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Where  zz    is sufficiently small and 1B  is a positive constant that does not depend on z or z .Proof. 

 

 

 

 

 

 

 

 

 

 

 

 

2/1
4

2/1

4

0 0

2/1

4

2/1

4

0 0

2/1

4

2/1

4

2/1

4

4

11

1
)()(

zz
M

dx
xz

xu
dx

xz

xu
dx

xz

xu

dx
xz

xu
dx

xz

xu
dx

xz

xu
zuzu

z

z

z z

z z z

z





















 

  



 

 









Where 
 1,0

)(max



x

xuM . 

Lemma 2.2. the quadrature error, iT satisfies 
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Proof. Using the Lipschitz continuity of the function 
4u and lemma 2.1, we get 
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Using Lemma 2.2  in the inequality (9), and applying a 

standard weakly singular discrete Gronwall inequality see 

Dixon and Mckee (1986), leads to the following theorem. 

 

Theorem 2.1. Let )(tu  be the solution of (5) and iu  an 

approximation to )(tu at 

t = 
it . Then the error 

iii utue  )( satisfies: 

2/1

5hMe 


(13) 

where 5M is a constant independent of h.

 
From (13) we have that Euler's method for equation (5) 

converges with order 1/2<1. Now, we prove that, at 

points ti away from the origin, first order of convergence 

is achieved. This requires a detailed analysis of the 

quadrature error, as it was done in Teresa et al. (2005) for 

the product Euler's method, we have the following result. 

 

Lemma 2.3. Teresa et al. (2005)The quadrature error, Ti, 

satisfies 
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where 6M  is a constant independent of h.

 
Aconclusion on the convergence order of Euler's method 

will require the following discrete lemma from Dixon 

(1985). 
 

Lemma 2.4.Teresa et al. (2005) Let Nixi 0, , be a 

sequence of non-negative real numbers satisfying 
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Where  ,,10  are non-negative constants and 

  is a positive constant independent of )0( hh . 
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Whenever .TNh  

By applying Lemma 2.4, 

with handh   2/3,2/1 , leads to the 

following theorem.   

 

Theorem 2.2. Let  tu  be the solution of (5) and 
iu  an 

approximation to  tu  at  itt   defined by (7). Then the 

error   iii utue   satisfies 
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where C is a positive constant independent of h. Therefore 

we can conclude that, the order of the error of Euler's 

method at the fixed point ti , away from the origin, 

is one. 

 

RESULTS AND DISCUSSION 

 

Numerical results. In this section we present some 

numerical results obtained with the product Euler method 

considered in the previous section. Tables 1,2 contain 

approximations of )(tu for equations (5) and (6) 

respectively obtained with several values of the step size. 

In Tables 3,4, we have computed experimental rates of 

convergence for equations (5) and (6) respectively, 

defined by   
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where 
2/, hh uu and 

4/hu denote approximations to  tu  

using the mesh spacing 2/,hh and 4/h , respectively. 

The results of Tables 3,4 indicate first order of 

convergence, which is in agreement with the result (17) of 

Theorem 2.2. In order to obtain error estimates we have 

taken 
640/1u as the exact solution of equations (5) and (6). 

The computed error norms, given by: 

 
N

i
tutue i

N

ii
Ni

N 


,max /1

1
 

 

are displayed in Tables 5,6 together with the 

corresponding rates of convergence. The 

numerical results suggest that the global order of 

convergence is 2/1 , confirming the theoretical result 

(13). 
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Table 1. Approximations of u(t) for equation (5). 
 

t N=80 N=160 N=320 N=640 

0.0 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 

0.1   1.783898E-01     1.784011E-01 1.784068E-01 1.784096E-01 

0.2     2.522493E-01     2.522813E-01 2.522973E-01 2.523053E-01 

0.3     3.089019E-01     3.089606E-01 3.089900E-01 3.090047E-01 

0.4     3.566441E-01     3.567344E-01 3.567796E-01 3.568022E-01 

0.5     3.986896E-01     3.988160E-01 3.988791E-01 3.989107E-01 

0.6     4.366873E-01     4.368533E-01 4.369363E-01 4.369779E-01 

0.7     4.716164E-01     4.718256E-01 4.719302E-01 4.719825E-01 

0.8     5.043493E-01     5.043813E-01 5.043973E-01 5.044053E-01 

0.9     5.348440E-01     5.349344E-01 5.349796E-01 5.350022E-01 

1.0     5.636164E-01     5.638256E-01 5.639302E-01 5.639825E-01 
 

Table 2. Approximations of u(t) for equation (6). 
 

t N=80 N=160 N=320 N=640 

0.0     0.000000E+00     0.000000E+00     0.000000E+00    0.000000E+00 

0.1     1.783901E-01     1.784013E-01     1.784068E-01     1.784096E-01 

0.2     2.521871E-01     2.522502E-01     2.522817E-01     2.522975E-01 

0.3     3.086717E-01     3.088455E-01     3.089325E-01     3.089759E-01 

0.4     3.561112E-01     3.564680E-01     3.566464E-01     3.567356E-01 

0.5     3.976956E-01     3.983189E-01     3.986306E-01     3.987864E-01 

0.6     4.350528E-01     4.360361E-01     4.365277E-01     4.367735E-01 

0.7     4.691437E-01     4.705893E-01     4.713120E-01     4.716735E-01 

0.8     5.016954E-01     5.023189E-01     5.026306E-01     5.027864E-01 

0.9     5.311430E-01     5.325890E-01     5.333120E-01     5.336735E-01 

1.0     5.590528E-01     5.600361E-01     5.605277E-01     5.607735E-01 
 

Table 3. Convergence rate for several values of N for equation (5). 
 

t N=80,160,320 N=160,320,640 

0.1 0.98729 1.02554 

0.2 1.00000 1.00000 

0.3 0.99754 1.00000 

0.4 0.99840 1.00000 

0.5 1.00912 0.99772 

0.6 1.00000 0.99653 

0.7 1.00000 1.00000 

0.8 1.00000 1.00000 

0.9 1.00000 1.00000 

1.0 1.00000 1.00000 
 

Table 4. Convergence rate for several values of N for equation (6). 
 

t N=80,160,320 N=160,320,640 

0.1 1.02599 0.97401 

0.2 1.00288 0.995427 

0.3 0.998340 1.03355 

0.4 1.00000 1.00000 

0.5 0.99977 1.00046 

0.6 1.00015 1.00000 

0.7 0.99990 0.99940 

0.8 1.00023 1.00046 

0.9 1.00000 1.00000 

1.0 1.00014 1.00000 
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Table 5. Errors and convergence rates for equation (5). 

 

N h 


e  rate 

40 0.025 0.3123 0.3621 

80 0.0125 0.0782 0.4412 

160 0.00625 0.0561 0.5423 

320 0.003125 0.0342 0.5331 

640 0.0015625 0.0231 0.5201 

 

Table 6. Errors and convergence rates for equation (6). 

 

N H 


e  rate 

40 0.025 0.3043 0.3562 

80 0.0125 0.0684 0.3973 

160 0.00625 0.0426 0.4923 

320 0.003125 0.0265 0.5123 

640 0.0015625 0.0165 0.5576 

 

CONCLUSION 
 

We have introduced a nonlinear Volterra integral 

equations with an Abel type kernels of the   2/14 
 xtu , 

  2/13 
 xtu respectively. We have shown that, while 

near the originthe exact solution u(t) behaves like
2/1t , it 

is differentiable if t is large enough. Numerical 

approximations to u were obtained by Euler's method and 

shown to beconvergent of order 1/2. Moreover it was 

proved that, for t away from the origin, the convergence 

order is one. These results were confirmed by some 

numerical examples. 
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